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Context

® O/W emulsions: suitable model systems to investigate oxidative phenomena
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Research questions

® Consequences of oxidation on the physical properties of emulsions?
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Research questions

®" How are lipid and protein oxidation interrelated?
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" How are lipid and protein oxidation interrelated?
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Approach: Bottom-up vs top-down
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Experimental

® 1/ Induce oxidation of dietary proteins and lipids, to various

and controlled levels

| Protein oxidation |

MCO system:
FeS0, 100 uM
H,0,25 mM
Na ascorbate 25 mM

bof| I
§ W Il

WPI solution 5 g/L Removal of oxidizing agent by UF-C

in pH 7 buffer @

Level of oxidation determined by
protein-bound carbonyls

+ characterization of aggregation
and fragmentation of proteins

Lipid oxidation

:> Incubation 60 °C,
0to 190 h

Sui;{;weerdo” Level of oxidation
determined by

conjugated diene

hydroperoxides

+ measurement of oil
viscosity

Experimental

B 2/ Study the effect of these modifications on the formation
and properties of the oil-water interface
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Experimental

® 3/ Study the effect of these modifications on the formation
and stability of O/W emulsions

&
High pressure
homogenization 3
) = &
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(Microchannel
€ & emulsification) &
& o

WPI solution,
native or
oxidized Droplet size (fresh, after ageing)

Creaming rate

Qil, freshly
stripped or
oxidized ———

Coalescence stability
Protein surface load (mg/m2)

Protein partitioning between the interface
and the aqueous phase

Characterization of oxidized proteins

| Formation of protein-bound carbonyls: | | Protein surface hydrophobicity: |

| Protein solubility: |
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* Rapid increase in carbonyl content * Loss in protein surface hydrophobicity

* Loss in solubility
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Characterization of oxidized proteins

| SDS-PAGE (non-reducing): |

MW (kDa) Native 3h 6h 24h 48h 168h
r .
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* Protein aggregation
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* Protein fragmentation

ptides

Characterization

of oxidized oil

| Conjugated diene hydroperoxides:

450 -
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Adsorption kinetics I
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Interfacial tension decreases faster and more for oxidized proteins (up to

a certain oxidation level)
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Adsorption kinetics I
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Pure water - Oxidized oil
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Lipid oxidation forms surface-active compounds (up to a certain oxidation
level, after which oil viscosity rises and diffusion is restrained)
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Interfacial rheology — Amplitude sweeps

Oxidized proteins — Freshly stripped or oxidized oil

High-middle oxidized oil

Freshly stripped oil .
(CD HPX = 236 mmol kg oil)

Droplet size (pm)

Larger emulsion droplets with oxidized proteins - Faster creaming
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* Protein and lipid oxidation decrease the elasticity of protein-stabilized interfaces
Emulsifying properties
Oxidized proteins — Freshly stripped oil
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Emulsifying properties

Oxidized proteins — hexadecane

| Coalescence stability: |

—
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Emulsifying properties
Oxidized proteins — Freshly stripped oil

Protein surface load :

Adsorbed protein profile:

[ Total

16 MW (kDa)
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e Larger protein amounts at the interface when protein are (highly) oxidized
* All MWs found at the interface - yet less/no clear bands for high MWs
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Functional consequences of lipid and protein

oxidation: Conclusions

f Effect on further oxidation )
of the system

2 i:
S
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i} Effect on emulsifying
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properties

o E
Effect on interfacial
properties
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Characterize induced
modifications
N—
¥
a " Induce lipid or protein
\E’ oxidation in bulk phases

® Protein oxidation -
fragmentation, aggregation,
side-chain modification

® Lipid oxidation - formation
of surface-active species

® Both decrease the oil-water
interface elasticity

® Protein oxidation promotes
physical destabilization of
emulsions

Berton-Carabin et al., just accepted, Eur.
J. Lipid Sci. Technol.

Interrelation between lipid and protein

oxidation in emulsions

Aim:
Getting insights on co-
oxidation of lipids and

proteins in O/W emulsions,
regarding:

® Time (the sequence of
the reactions)

¢ Location (where
reactions occur)

Make protein-stabilized
emulsions
Induce oxidation

Markers of lipid and
protein oxidation (in time,
in the different phases)

t
Interrelation between
both phenomena
Functional consequences
on proteins?
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Experimental

® 1/ Prepare protein-stabilized emulsions

Dairy proteins

Protein-stabilized O/W emulsions Controlled

B-lactoglobulin

concentration of non-
adsorbed proteins

(BLG) §
. Minimum
;T;zeoa F ’-222 concentration
in the aqueous
phase to get
Bovine serum sta b_Ie
albumin (BSA) emulsions
B-casein (BCN) > Buffer,
d3; ~ 1.5-2 ym pH 6.7
Various oxidation
conditions
. ’\
® 2/ Incubate emulsions and / [ FesoueoTaL/ 200 | | 33°C, no
measure relevant markers [ Fec/nanse 150 | L mater
\ MetMb 1 pM \
\ AAPH 1 mM \
25°C
Preparation t= Incubation t=48/72 h

of I

em“'S‘°”SAAAAAAAAAAA

Oxygen consumption

(GC)

Measurement of
oxidation
parameters

Evaluation of
overall protein
modifications

Front-surface
fluorescence

2

compounds

rvm

Volatile

Volatile compounds
(SPME - GC)

Conjugated dienes
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Lipid ox (mmol O,/kg oil)

Effect of aqueous phase proteins on lipid
oxidation

140 - i3z 0n
120 g 120 1 7 No BCN excess —
100 4 % 100 | m 4 5g/L excess BCN
o g
80 - E
60 3 60 -
40 | A No BLG excess S 40 4
k]
20 - A+ 59/L excess BLG 2 20
o o gl pmwem ‘ ‘
0 20 40 60 80 0 20 40 60 80
Time (h) Time (h)

* Non-adsorbed (excess) proteins have a protective effect against lipid
oxidation in emulsions

Phasing of lipid oxidation and protein
modifications

Ex: BCN-stabilized emulsion FeS04/EDTA 1/1 200 uM 25 °C
Tryptophan fluorescence Lipid oxidation
1 140
2 09 120 _
> 08 5
2 o7 100 ;
E 0.6 8 3
e 0.5 (:]_(
8 04 60 5
2 N
5 03 40 &
Z 02 o =
0.1

o

Time (h)

t1 /2 (Trp)

t - 5
1/2 (tox Half-times of reactions
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Phasing of lipid oxidation and protein
modifications

Ex: BCN-stabilized emulsion

o)

Fluorescence intensity (I/1
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FeSO,/EDTA 1/1 200 pM 25 °C

Time (h)

Liox

(110 B3/%0 joww) xo pidi

Lag-times of reactions

Phasing of lipid oxidation and protein
modifications

‘ Half-times of reactions ‘

80 1

70 A

60 -

50 A

40 A

30

20 A

10 4

Tryptophan fluorescence
ty2 rpy (M)

0

¢BLG
EBSA
ABCN

ti/aerpy = 0-67 tip Loxy = 7.7

FeSO,/EDTA 1/1 200 uM 25 °C |

FeCly/NaAsc 1/1 50 yM 25 °C |

33 °C, no initiator ‘

MetMb 1 pM 25 °C \

|
|
|
[
l

AAPH 1 mM 25 °C |

0

2‘0 4‘0 6‘0
ti ox (M)

80

Lipid oxidation

* Protein modifications and lipid oxidation are time-linked phenomena
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Phasing of lipid oxidation and protein
modifications

‘ Lag

times of reactions ‘
50 | &BLG
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FeS0,/EDTA 1/1 200 uM 25 °C

FeCl;/NaAsc 1/1 50 pM 25 °C

33 °C, no initiator

\
|
\
[ MetMb 1 pM 25 °C
|

AAPH 1 mM 25 °C

|

50

Lipid oxidation

* Protein modifications precede lipid oxidation in protein-stabilized emulsions

Further characterization of protein oxidation

Preparation

of
emulsions

Incubation

t=48/72h

»

Whole emulsion

A

’.-. Creamed

phase

’ (adsorbed

proteins)

Aqueous
phase (non-
adsorbed
proteins)

>

A

‘ Front-surface fluorescence ‘

Protein solubility &
aggregation

‘ Protein-bound carbonyls ‘
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Location of protein modifications

Comparison of Trp fluorescence quenching in adsorbed vs non-adsorbed proteins:

BLG-stabilized emulsion

| FeSO,/EDTA 1/1 200 yM 25 °C

Whole emulsion
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* Adsorbed proteins undergo extensive modifications

Adsorbed proteins undergo extensive
oxidation

BLG-stabilized emulsion

FeSO,/EDTA 1/1
200 uM 25 °C

| Protein solubility in GuCl 6 M:
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-
——
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20

0
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[] Emulsion

Protein-bound carbonyls (soluble
proteins):

Carbonyls (umol/g
soluble proteins)

Time (h)

[C] Aqueous phase
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10
1]
0+ T T \
0 24 48

[] Creamed phase
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Interrelation between lipid and protein
oxidation in emulsions: Conclusions

Make protein-stabilized
emulsions
® Protein modifications start
prior to lipid oxidation Induce oxidation

® Both reactions are timely

linked
Markers of lipid and

® Adsorbed proteins undergo protein oxidation (in time,

extensive oxidation in the different phases)

Interrelation between
both phenomena
Functional consequences
on proteins?

Towards a comprehensive scheme?

? ]
Moderate decrease in solubility
Slow down / delay Moderate to high aggregation 3
lipid oxidation []

Moderate but early decrease in fluorescence
Interfacial and emulsifying properties are negatively affected
Non-adsorbed

proteins
@ Free radicals, /@>

0,

- 3 L B
metal ions l/ T
2 \ * N High decrease in protein solubility
. Fe2+
R e @ A e ) 6 Aggregation (partly S-S induced)

HO" Fe3+

lipids (LH) Complete extinction of protein
Adsorbed ) fluorescence
proteins High carbonyl formation
» Time
INITIATION PROPAGATION TERMINATION
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